Вездесущий филлотаксис

Все в Природе подчинено строгим математическим законам. Оказывается, что расположение листьев на стеблях также носит строгий математический характер и это явление называется в ботанике "филлотаксисом". Суть филлотаксиса состоит в винтовом расположении листьев на стебле растений (ветвей на деревьях, лепестков в соцветьях и т.д.).

В явлении филлотаксиса используются более сложные понятия симметрии, в частности понятие "винтовая ось симметрии". Рассмотрим, например, расположение листьев на стебле растения (Рис.1). Мы видим, что листья находятся на различных высотах стебля вдоль винтовой линии, обвивающейся вокруг его поверхности. Для того чтобы перейти от нижележащего листа к следующему, приходится мысленно повернуть лист на некоторый угол вокруг вертикальной оси стебля, а затем поднять его на определенный отрезок вверх. В этом и состоит суть "винтовой симметрии".

Винтовая симметрия
Рисунок 1. Винтовая симметрия.

А теперь рассмотрим характерные "винтовые оси", которые возникают на стеблях растений (Рис.2). На Рис.2-а изображен стебель растения с винтовой осью симметрии третьего порядка. Проследим линию листорасположения на этом рисунке. Для того, чтобы перейти от листа 1 к листу 2, следует повернуть первый вокруг оси стебля на 120° против часовой стрелки (если смотреть снизу) и затем передвинуть листок 1 вдоль стебля по вертикали до тех пор, пока он не совместится с листком 2. Повторяя подобную операцию, перейдем от листа 2 к листу 3, а затем к листу 4. Обратим внимание на то, что листок 4 лежит над листком 1 (как бы повторяет его, но этажом выше) и что, идя от листа 1 к листу 4, мы трижды совершили поворот на угол 120°, т.е. осуществили полный оборот вокруг оси стебля (120° ´ 3 = 360°).

Винтовые оси на стеблях растений
Рисунок 2. Винтовые оси на стеблях растений.

Угол поворота винтовой оси у ботаников называется "углом расхождения листьев". Вертикальная прямая, соединяющая два листа, расположенные друг над другом на стебле, именуется "ортостихой". Отрезок 1-4 ортостихи соответствует полной трансляции винтовой оси. Как мы увидим далее, число оборотов вокруг оси стебля для перехода от нижнего листа к вышележащему, расположенному в точности над нижним (по ортостихе), может равняться не только единице, но и двум, трем и т.д. Это число оборотов называется "листовым циклом". В ботанике принято характеризовать винтовое листорасположение с помощью дроби, числителем которой является число оборотов в листовом цикле, а знаменателем - число листьев в этом цикле. В рассмотренном нами случае мы имеем винтовую ось типа 1/3.

На Рис.2-б изображена пятерная винтовая ось симметрии с листовым циклом 2 (для перехода от листа 1 к листу 6 надо совершить два полных оборота). Дробь, характеризующая данную ось, равна 2/5; угол расхождения листьев составляет 144° (360° : 5 = 72°; 72° ´ 2 = 144°). Заметим, что существуют и более замысловатые оси, например, типа 3/8, 5/13 и т.д.

Возникает вопрос, какими могут быть числа a и b, характеризующие винтовую ось типа a/b. И вот здесь Природа преподносит нам очередной сюрприз в виде так называемого "Закона филлотаксиса".

Ботаники утверждают, что дроби, характеризующие винтовые оси растений, образуют строгую математическую последовательность, состоящую из отношений соседних чисел Фибоначчи, то есть:

1/2, 1/3, 2/5, 3/8, 5/13, 8/21, 13/34, ... .(1)

Вспомним, что ряд Фибоначчи есть следующая последовательность чисел:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... .(2)

Сравнивая (1) и (2) нетрудно увидеть, что дроби в последовательности (1) образуются числами Фибоначчи, взятыми через одно число.

Ботаники установили, что для различных растений характерны свои дроби филлотаксиса из последовательности (1). Например, дробь 1/2 свойственна злакам, березе, винограду; 1/3 - осоке, тюльпану, ольхе; 2/5 - груше, смородине, сливе; 3/8 - капусте, редьке, льну; 5/13 - ели, жасмину и т.д.

Паперомия седая
Рисунок 3. Паперомия седая.

Какова же "физическая" причина, лежащая в основе "законов филлотаксиса"? Ответ очень прост. Оказывается, что именно при таком расположении листьев достигается максимум притока солнечной энергии к растению.

С учетом этого замечания нас теперь не удивит и тот факт, что практически все соцветья и плотно упакованные ботанические структуры (сосновые и кедровые шишки, ананасы, кактусы, головки подсолнечников и многие другие) также строго следуют числам Фибоначчи.

Семечки в головке подсолнуха
Рисунок 4. Семечки в головке подсолнуха располагаются по спиралям, при этом отношение числа левых и правых спиралей равно отношению соседних чисел Фибоначчи.

Соцветие эхмеи
Рисунок 5. Соцветие эхмеи удовлетворяет строгому математическому закону, основанному на числах Фибоначчи.

Но не только растения, но и некоторые животные, например, змеи используют те же принципы в организации своих внешних форм.

Таким образом, строгую математику мы находим и в расположении лепестков на цветке розы и в разрезе яблока (пентаграмма), и в сосновой шишке, и в головке подсолнечника. И мы снова и снова убеждаемся в том, что все в природе подчинено единому плану, единым законам - и раскрыть и объяснить эти законы и есть главная задача человеческой науки.