Золотой прямоугольник

Как упоминалось в наших предыдущих страницах, золотое сечение очень широко используется в геометрии. Мы начнем наше путешествие по геометрическим свойствам золотого сечения с "золотого" прямоугольника, которые имеет следующее геометрическое определение (Рис.1). "Золотым" прямоугольником называется такой прямоугольник, в котором отношение большей стороны к меньшей равно золотой пропорции, то есть

Рассмотрим случай простейшего "золотого" прямоугольника, когда AB = t и BC = 1.

'Золотой' прямоугольник
Рисунок 1. "Золотой" прямоугольник.

Найдем теперь на отрезках AB и DC точки E и F, которые делят соответствующие стороны AB и DC в "золотом сечении". Ясно, что AE = DF = 1, тогда

Соединим теперь точки E и F отрезком EF и назовем этот отрезок "золотой линией". При этом с помощью "золотой линии" EF "золотой" прямоугольник ABCD оказывается разделенным на два прямоугольника AEFD и EBCF. Поскольку все стороны прямоугольника AEFD равны между собой, то этот прямоугольник есть ни что иное, как квадрат.

Рассмотрим теперь прямоугольник EBCF. Поскольку его большая сторона BC = 1, а меньшая то отсюда следует, что их отношение BC: EB = t и, следовательно, прямоугольник EBCF является "золотым"! Таким образом "золотая" линия EF расчленяет исходный "золотой" прямоугольник ABCD на квадрат AEFD и новый "золотой" прямоугольник EBCF.

Проведем теперь диагонали DB и EC "золотых" прямоугольников ABCD и EBCF. Из подобия треугольников ABD, FEC, BCE вытекает, что точка G разделяет "золотым сечением" как диагональ DB, так и "золотую" линию EF. Проведем теперь новую "золотую" линию GH в "золотом" прямоугольнике EBCF. Ясно, что "золотая" линия GH разделяет "золотой" прямоугольник EBCF на квадрат GHCF и новый "золотой" прямоугольник EBHG. Более того, точка I делит "золотым сечением" диагональ EC и сторону GH. Повторяя многократно эту процедуру, мы получим бесконечную последовательность квадратов и "золотых" прямоугольников, которые в пределе сходятся к точке O.

Заметим, что такое бесконечное повторение одних и тех же геометрических фигур, то есть квадрата и "золотого" прямоугольника, вызывает у нас неосознанное эстетическое чувство гармонии и красоты. Считается, что именно это обстоятельство является причиной того, что многие предметы прямоугольной формы, с которыми человек имеет дело (спичечные коробки, зажигалки, книги, чемоданы), зачастую имеют форму "золотого" прямоугольника. О применении "золотого" прямоугольника в архитектуре и живописи мы расскажем позже.